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Within a string cosmology context, the large-scale temperature anisotropies may
arise from the contribution of seeds to the metric fluctuations. We study the cases
of electromagnetic and axion seeds. We find that massless or very light axions
can lead to a flat or slightly tilted blue spectrum that fits current data.

1. INTRODUCTION

I will briefly present some results[1, 2] on the seeds of large-scale
anisotropy in the context of string cosmology. I work on the pre-big-bang
scenario (PBB) [3], defined as a particular model of inflation inspired by the
duality properties of string theory. The question which I address is whether we
can reproduce the observed amplitude and slope of the large-scale temperature
anisotropy and of large-scale density perturbations within the PBB scenario.

First-order scalar and tensor metric perturbations lead to primordial
spectra that grow with frequency [4] with a normalization imposed by the
string cutoff at the shortest amplified scales. These blue spectra have too
little power at scales relevant for the observed anisotropies in the cosmic
microwave background radiation (CMBR). In contrast, the axion energy
spectra were found to be logarithmically diverging, leading to red spectra of
CMBR anisotropies which are in conflict with observations. These results
already ruled out four-dimensional PBB cosmology.

However, if one allows for internal contracting dimensions in addition
to the three expanding ones, the supersymmetric partner of the dilaton (the
universal axion of string theory) can lead to a flat Harrison–Zel’dovich (HZ)

1 Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France, and DARC, Observa-
toire de Paris, UPR 176 CNRS, 92195 Meudon Cedex, France; e-mail: mairi@ihes.fr

1851
0020-7748/00/0700-1851$18.00/0 q 2000 Plenum Publishing Corporation



1852 Sakellariadou

spectrum of fluctuations for an appropriate relative evolution of the external
and the compactified internal dimensions [5]. Thus, the PBB scenario may
contain a natural mechanism for generating large-scale anisotropy via the
seed mechanism [6] (i.e., fluctuations of one component of the energy momen-
tum tensor can feed back on the metric through Einstein’s equations).

In what follows, I consider the possibility that vacuum fluctuations of
the electromagnetic and of the axion field may act, at second order, as
scalar seeds of large-scale structure and CMBR anisotropies. The induced
perturbations are isocurvature perturbations. More precisely, I examine
whether the metric perturbation spectrum triggered by these seeds can be
flat enough to match present measurements, consistent with the COBE nor-
malization of the amplitude on large scales, and with the normalization
imposed by the string cutoff at the shortest amplified scales.

2. LARGE-SCALE PERTURBATIONS IN THE PRESENCE OF
SEEDS

I will derive a general formula for large-scale CMBR anisotropies in
models where perturbations are triggered by seeds. I consider the case of
scalar perturbations.

2.1. Cosmological Perturbation Theory with Seeds

We express the Fourier components of the energy momentum tensor of
the seeds Tmn in terms of four scalar “seed functions” fr, fp , fv , and fp [7]:

T00 (k, h) 5 M 2 fr(k, h) (1)

Tj0(k, h) 5 2iM 2 kj fv (k, h) (2)

Tij(k, h) 5 M 2F1fp(k, h) 1
k2

3
fp(k, h)2gij 2 ki kj fp(k, h)G (3)

Here M denotes an arbitrary mass scale, introduced for dimensional reasons;
h denotes conformal time, and g represents a metric of constant curvature.

The perturbed Einstein equations read [7]

k2F 5 4pGra2D 1 e[ fr 1 3(ȧ/a)fv] (4)

F 1 C 5 28pGa2k22 pP 2 2efp (5)

where e [ 4pGM 2, a is the scale factor, and dot denotes derivative with
respect to h. Here P is the anisotropic stress potential, V is the peculiar
velocity potential, D (and Dg , which I will use later) is a gauge-invariant
density perturbation variable, and F, C are two geometric quantities, called
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the Bardeen potentials. Since large-scale CMBR anisotropies are induced at
recombination and later, we set P 5 0.

The large-scale anisotropies of CMBR are determined by the combina-
tion C 2 F:

C 2 F , max Hefp, eh21fr 1 3
ȧ
a

fv2J (6)

2.2. The Seed Contribution to CMBR Anisotropies

I calculate the CMBR anisotropies and their contribution to DT/T via
the Sachs–Wolfe effect [8]. The temperature perturbation reads [7]

dT(n)
T

5 F1
4

Dg 1 Vjnj 1 C 2 FG (hdec, xdec)

1 #
h0

hdec

(Ċ 2 Ḟ) (h, x(h))dh (7)

where x(h) 5 x0 2 (h0 2 h)n is the unperturbed photon position at time h
for an observer at x0, h0 is the conformal time today, and xdec 5 x(hdec).

The angular power spectrum of CMBR anisotropies is expressed in
terms of the dimensionless coefficients C, which appear in the expansion of
the angular correlation function in terms of the Legendre polynomials P,:

KdT
T

(n)
dT
T

(n8)L
(n?n85cosq)

5
1

4p o
l

(2, 1 1)C,P,(cos q) (8)

Here the brackets denote spatial average, or expectation values if perturbations
are quantized. To determine the C, we Fourier-transform Eq. (7), defining

w(k) 5
1

!V #
V

w(x)eik?xd 3x (9)

For the coefficients C, of Eq. (8) we obtain

C, 5
2
p # ^.D,(k).2&

(2, 1 1)2 k2dk (10)

where

D,

2, 1 1
5

1
4

Dg(k, hdec)j,(kh0) 2 j8,(kh0)V(k, hdec)

1 k #
h0

hdec

(C 2 F)(k, h8)j8,(kh0 2 kh8)dh8 (11)
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and j8, stands for the derivative of j, with respect to its argument. On large
angular scales, khdec ¿ 1, the SW contribution dominates and we obtain.[2]

CSW
, 5

2
p #k4dk KF#h0

hdec

(C 2 F)(k, h)j8, (kh0 2 kh)dhG2L (12)

We approximate [2] the Bardeen potentials C, F on superhorizon scales by a
power-law spectrum: ^.C 2 F.2& 5 C2(k) (kh)2g. Furthermore, we consider[2]
models where the seed contribution does not grow in time on subhorizon
scales. Thus,

C 2 F ' HC(k)(kh)g, kh ¿ 1
C(k), kh À 1

(13)

We further assume [2] that also C(k) is given by a simple power law. Thus,
we have

C(k) 5 H1k23/2(k/k1)a, k # k1

0, k . k1
(14)

where 1 is a dimensionless constant, and k1 denotes a comoving cutoff scale.
Inserting Eq. (14) in Eq. (12), we obtain [2]

CSW
, ' 12 2

p #
k1

0

dk
k 1 k

k1
2

2a

.I(k).2 (15)

where

I(k) 5 #
1

(kh)dec

d(kh)(kh)g j8,(kh0 2 kh) 1 j,(kh0 2 1) (16)

We compare CSW
, with the inflationary result: CSW

, } G(, 2 1/2 1
n/2)/G(, 1 5/2 2n/2), where n denotes the spectral index. The scale-invari-

ant spectrum, as found by the DMR experiment [9], requires 0.9 # n # 1.5.
Thus, we get [2]

20.05 , g 1 1 1 a , 0.25, g # 21, n . 3 1 2(a 1 g) (17)

2 0.05 , a ,0.25, g . 2 1, n 5 1 1 2a (18)

3. SEEDS FROM STRING COSMOLOGY

In this section I compute the seed functions fr, fv , fp and estimate the
Bardeen potentials for electromagnetic and axion perturbations.
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3.1. Electromagnetic Seeds

Consider a stochastic background obtained by amplifying the quantum
electromagnetic fluctuations of the vacuum. For purely magnetic seeds (the
electric component of the stochastic background is rapidly dissipated, due to
the conductivity of the cosmic plasma), on superhorizon scales we obtain fv

5 0, fp À h2 fr, leading to [2]

k3.C 2 F.2 (k, h) ' 12(kh)2g (k/k1)2a (19)

with

g 5 H 24, m # 3/4
2m 2 11/2, 3/4 # m # 3/2

(20)

a 5 H 7/2, m # 3/4
5 2 2m, 3/4 # m # 3/2

(21)

1 5 1H1/Mp

4p 2
2

(k1heq)2 in both cases (22)

(m , 3/2 to avoid photon overproduction). H1 is the physical cutoff scale at
which the universe becomes immediately radiation-dominated, and Mp is the
Planck mass.

Since in both cases g 1 1 , 0, the seeds decay fast enough outside the
horizon. However, in both cases g 1 a 5 20.5, which implies n 5 2. Such
a spectrum grows too fast with frequency to fit the COBE measurements.
The quadrupole amplitude [10] Qrms-PS 5 !(5/4p)C2T0 5 (18 6 2) mK leads
to C2 5 (1.09 6 0.23) 3 10210. Thus, compatibility with the COBE normaliza-
tion implies [2]

(6 2 a) log10 (H1/Mp) & 55(a 2 2) 2 6 1 log10(g 1 1)2 (23)

This constraint is easily satisfied by a growing seed spectrum, a . 2. Even
in the limiting case a 5 2, this condition is marginally compatible even with
the maximal expected value H1 , Ms , 5 3 1017 GeV.

3.2. Axionic Seeds

We consider pseudoscalar vacuum fluctuations amplified by the time
evolution of a higher dimensional background. We first consider massless
axions. If m , 3/4, the situation is like that for electromagnetic seeds. The
induced CMBR fluctuations have the wrong spectrum, but their amplitude
is sufficiently low to avoid conflict with observations. However, if 3/4 # m
# 3/2, we obtain [1,2]
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k3.C 2 F.2(k, h) ' 12(kh)2g (k/k1)2a,
(24)

g 5 2m 2 7/2, a 5 2 2m 1 3

For m 5 3/2 we obtain a Harrison–Zel’dovich spectrum with amplitude 1 .
(H1/Mp)2. The nonconformal coupling of the axions to the metric leads to an
additional amplification of perturbations after the matter–radiation equality.
The normalization of the axion spectrum to the COBE amplitude imposes
the constraint[1, 2]

log10
H1

Mp
. 164 2 116m

1 1 2m
with 1.4 , m , 1.5 (25)

implying

3 3 1023 & H1/Mp & 2.6 (26)

This condition is perfectly compatible with H1 , Ms , 5 3 1017 GeV.
Let us now turn to the case of massive axions. In this case, the fp

contribution to F, C is negligible when the superhorizon modes are already
nonrelativistic at the time of decoupling, and we obtain [2] constant Bardeen
potentials with

g 5 0, a 5 3 2 2m, 1 5 (H1/Mp)2(m/Heq)1/2 (27)

where m denotes the axion mass. For m 5 3/2 we obtain a flat Harrison–
Zel’dovich spectrum. The amplitude of perturbations is enhanced by the factor
(m/Heq)1/2. Thus, the axion mass m has to be bounded to avoid conflicting with
the COBE normalization C2 ' 10210. In addition, we impose 1.4 , m ,
1.5 and m . Hsec , Heq, and we require that the present axion energy density
is constrained by the critical energy density. We find that for a typical scale
H1 , Ms , (1021–1022)Mp , the maximal allowed axion mass window is [2]

10227 eV & m & 10217 eV (28)

4. CONCLUSIONS

I have briefly discussed, in the context of the PBB scenario, the possibil-
ity that the large-scale temperature anisotropies may arise from the contribu-
tion of seeds to the metric fluctuations. In particular, I considered the cases
in which the seed inhomogeneity spectrum is due to vacuum fluctuations of
the electromagnetic field and of the (Kalb–Ramond) axion field

In the first case, I showed that electromagnetic fluctuations lead to a
spectrum that grows too fast with frequency to be compatible with COBE
observations. Since the contribution of electromagnetic seeds to the large-
scale anisotropy is negligible, there are no constraints from the COBE normal-
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ization to the production of seeds for generating the galactic magnetic fields
via the amplification of electromagnetic vacuum fluctuations due to a dynami-
cal dilaton background [12].

In the second case, I discussed how a stochastic background of massless
axions, produced within the context of the PBB scenario, is a possible candi-
date for an explanation of the large-scale anisotropy measured by COBE
satellite. Regarding massive axions, I showed that if the axion mass is such
that all modes outside the horizon at decoupling are already nonrelativistic,
then a slightly tilted blue spectrum is still compatible with the amplitude and
slope measured by the COBE satellite, provided the axion mass is inside an
appropriate window, in the ultralight mass region.

As a next step, one has to study the predictions of this model regarding
the acoustic peaks in the CMBR anisotropy power spectrum and the linear
dark matter power spectrum and compare them with currently available
experimental and observational data. Some preliminary results are discussed
in ref. 11. The authors found [11] a strong dependence of their predictions
on the overall evolution of extra dimensions during the PBB phase. In other
words, further experimental and observational data coming from the CMBR
anisotropies and the galaxy distribution may provide some information about
the evolution of string theory’s extra dimensions.
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